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Figure 1. SCF and MP2 energies (in atomic units) of the cumulenic form 
plotted against the distortion of the bond angle (in degrees) relative to 
the Z)18/, form with bond angles of 160°. The bond distances were kept 
at 1.277 A. This plot shows the symmetry-breaking solution. (The 
minima in the SCF curves are observed at distortions of ±15°.) 

function (exponent 0.55) yielding 324 contracted basis functions. 
The geometry of 2 was optimized at the MP2 level of theory, 
correlating 36 valence electrons (the Is core electrons and the 
o--bonds were not correlated), while 1 and 3 were optimized at 
the SCF level since an optimization at the MP2 level would lead 
to structure 2. All-valence MP2 energies were then calculated 
by using an ANO5 (13s8p4d2f)/[5s4p3d2f] basis set with a total 
of 828 contracted functions. Optimized geometry parameters are 
listed in Table I and relative energies in Table II. All calculations 
were performed with the direct SCF6 and direct MP27 formalism, 
using the program DISCO.8 

Di)h symmetry was imposed in all calculations. During opti­
mization of the Z)18/,-symmetric form 2, a symmetry-broken so­
lution (the wave function possessing only D9h symmetry) was also 
obtained at the SCF level. This is clearly an artifact of the SCF 
approximation, as the MP2 energy for the symmetric solution is 
several electronvolts below the symmetry-broken one (cf. Figure 
1). However, since SCF orbitals have to be used for an MP2 
calculations, there is no way to obtain a potential energy curve 
corresponding to the most stable solution at the MP2 level. The 
SCF calculation for that solution would correspond to an excited 
electronic state, and the MP2 calculation would collapse. 

In summary, calculations at the SCF level give results very 
similar to those of previous theoretical work, even with much larger 
basts sets. The symmetric, cumutene-like form 2 lowers its energy 
by more than 1 eV by distorting the angles to create two non-
equivalent types of C atoms (form 3). By alternating the bond 
distances, the polyacetylenic form 1 becomes stabilized with respxt 
to 2 by more than 2 eV. No other forms of distortions were 
considered, and there is certainly the possibility that other dis­
tortions not considered here would lower the energy even further. 
At the correlated level, however, our calculations show that 2 (the 
cumulenic form) has the lowest energy among the structures 
considered. Apparently, electron correlation plays a critical role 
in determining the ground-state conformer of this system. 
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The recent success in the preparation of the fullerenes C60 and 
C70

1"3 and the confirmation4 of the theoretical prediction5 that 
the former is a relatively electronegative molecule prompted us 
to do a comparative study of the cyclic voltammetry (CV) of these 
two new carbon clusters to determine the effect of structure on 
redox properties. 

Samples of the pure fullerenes C60 and C70 were obtained as 
described previously for the purification of analytical quantities.3 

The first 13C NMR spectrum of pure C70 is shown in Figure 1. 
The two compounds were used without special precautions, other 
than the usual oxygen removal from solvent-electrolyte systems 
prior to electrochemical cycling. The typical voltammogram shown 
in Figure 2 was recorded with a commercial BAS 100A apparatus. 
Table I shows the solvent and scan rate effect on the position of 
the voltammetric waves. The values are relative to Ag/AgCl with 
internal ferrocene for calibration. 

We discovered three interesting features: 
1. Both fullerenes have essentially the same CV behavior. 
2. There are three observable reversible reduction waves and 

not two, as claimed earlier.4 The third wave (E = -1.25 V) is 
chemically reversible in CH2Cl2 only on cycling at rates above 
1 Vs"1. In agreement with Haufler,4 we observed no oxidation 
waves even in benzonitrile. 

3. There is a dramatic solvent effect on the reduction potentials; 
E] is lowered by ~0.2 eV but E2 remains unchanged in THF, 
when compared to other solvents. Since three of the solvents 
(CH2Cl2, THF, and ODCB) have essentially the same dielectric 
constant and that of PhCN is much higher, the solvent effect may 
be related to the Gutmann solvent donicity number (DN),6,7 rather 
than the solvent polarity. 

We were surprised to observe identical behavior for both 
fullerenes. Intuitively, C60^ high electron affinity and ionization 
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Table I 

compd 

C«) 

C70 

Fc' 

scan rate, mV/s 

100 (Ag/AgCl) 
1000 (Ag/AgCl) 

100(Ag/AgCl) 
1000 (Ag/AgCI) 

100 (Ag/AgCI) 

E, 
-0.40 
-0.41 
-0.41 
-0.32» 

ODCB" (V)'' 

E2 

-0.76 
-0.81 
-0.78 
-0.77» 
+0.67 

E3 

-1.25 
-1.27 

-1.23* 

E1 

-0.21 
-0.18 
-0.18 
-0.19 

THF (V)' 

E2 

-0.81 
-0.81 
-0.74 
-0.78 
+0.67 

E2 

-1.39 
-1.40 
-1.28 
-1.29 

CH2Cl2 (V)' 

E) 
-0.33 
-0.39 
-0.38 
-0.35 

E2 

-0.73 
-0.78 
-0.76 
-0.74 
+0.59 

£3 

-1.22 
-1.25 
-1.17 
-1.17 

E1 

-0.33 
-0.33 
-0.33» 

PhCN (V)' 

E2 

-0.76 
-0.78 
-0.74» 

+0.58 

E3 

-1.25 

!•v^M^MWiWW^*^^ 

0ODCB = o-dichlorobenzene. »Scan rate = 25 mV/s. 0Fc = ferrocene. •*£„ £2, and £3 are half-cell potentials; e.g., £, = 1/2(£Tired + E?lm). 

On the other hand, C70 is more strained than C60'0 and it has 
fewer pyracylene bonds."'2 For reason a, above, the larger strain 
relief would tend to increase C70's electron affinity relative to C60 

but the fewer pyracylene bonds would have the opposite effect. 
It is possible that both effects operate and cancel each other to 
produce the observed results. 

In conclusion, we discovered that pure C60 and pure C70 exhibit 
the same first reduction wave potentials in four different solvents 
of disparate solvent properties. A reversible reduction potential 
of only -0.21 V vs Ag/AgCl was found in THF, indicating that 
the radical anion salts of these fullerenes should be preparable 
in that solvent. Our results are in agreement with theoretical 
calculations for C60 but not for C70. According to theoretical 
calculations," the latter would be expected to have a value of E^/2 

closer to 0 relative to Ag/AgCl. We interpret our observations 
in terms of relief of strain13 and pyracylene-type electronic 
character of the fullerenes. 
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Figure 1. 13C NMR spectrum of a solution of C70 in 1,1,2,2-tetra-
chloroethane-rf2 (6800 scans). 
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Figure 2. Cyclic voltammogram of fullerene C70 in CH2Cl2 with 0.1 M 
Bu4N

+BF4" at ambient temperature. Working and counter electrodes 
were Pt, the reference electrode was Ag/AgCl, and the scan rate was 
1000 mV/s (entry 4 in Table I). 

potential could be ascribed to two factors:8 

a. Negatively charged carbon atoms resulting from electron 
capture would have more sp3 character and would have longer 
bond lengths to their neighbors and hence decrease the strain 
energy of the cluster; conversely, positively charged members of 
the cage resulting from electron loss would have more sp2 character 
and would have shorter bond lengths to their neighbors and hence 
increase the strain energy of the cage. 

b. If one could consider C60 a spherical "superbenzopyracylene", 
the cage would be expected to be electronegative because pyr­
acylene has a relatively high electron affinity and its LUMO is 
a NBMO.9 

Pyracylene "C60" 
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+ 2)ir aromatic dianion. 
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ative. 
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There is a symmetry among most amphiphilic self-organizing 
structures in regard to the distribution of polar and nonpolar 
components. Normal and reversed micelles and normal and re­
versed hexagonal liquid crystals, as well as normal and reversed 
O/W and W/O macro- and microemulsions and bicontinuous 
phases, are documented examples of this symmetrical pattern. One 
notable exception is vesicles. Normal vesicles or liposomes pos­
sessing closed hydrocarbon shells separating well-defined aqueous 
interior and exterior phases were first described in 1964.1-2 These 
first vesicles were prepared by dispersing phospholipid lamellar 
liquid crystals in water. Since then many other amphiphiles with 
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